21 Dividing Line Segments

UNDERSTAND The midpoint of a line segment divides, or partitions, the segment in half, producing two line segments of equal length, so the lengths have a ratio of 1:1. It is possible to find the point that divides a given line segment into two segments of any given ratio.

For a vertical or horizontal line segment, finding such a point is a straightforward process. Look at the coordinate plane.

Notice that all points on $\overline{A B}$ have the same x-coordinate, -4 . So, the point $\frac{1}{3}$ of the way from A to B "rises" only $\frac{1}{3}$ of the way along the line. To find this point, add $\frac{1}{3}$ of the length of $\overline{A B}$ to the y-coordinate of A.

$$
\begin{aligned}
\left(-4,-3+\frac{1}{3} A B\right) & =\left(-4,-3+\frac{1}{3} \cdot 9\right) \\
& =(-4,-3+3)=(-4,0)
\end{aligned}
$$

The point $(-4,0)$ is $\frac{1}{3}$ of the way from A to B, and it partitions $\overline{A B}$ in a ratio 1:2.
A similar process can be used to find the point $\frac{1}{3}$ of the way from C to D. This point "runs" only $\frac{1}{3}$ of the length along the line from C to D.

$$
\left(-6+\frac{1}{3} C D,-5\right)=\left(-6+\frac{1}{3} \cdot 12,-5\right)=(-6+4,-5)=(-2,-5)
$$

The point $(-2,-5)$ is $\frac{1}{3}$ of the way from C to D, and it partitions $\overline{C D}$ in a ratio 1:2.
A diagonal line segment can also be partitioned by using a point. A point that is, for example, $\frac{1}{3}$ of the way from one endpoint to another "rises" $\frac{1}{3}$ of the way along the segment and also "runs" $\frac{1}{3}$ of the way along the segment.
Look at line segment $\overline{M N}$ on the coordinate plane below. To find the point P that is $\frac{1}{3}$ of the way from M to N, add $\frac{1}{3}$ of the "rise" to the y-coordinate of M and add $\frac{1}{3}$ of the "run" to its x-coordinate. Point M is located at $(-6,-5)$, and N is located at $(6,4)$.

$$
\begin{aligned}
\text { rise } & =4-(-5)=9 \\
\text { run } & =6-(-6)=12 \\
P & =\left(-6+\frac{1}{3} \cdot 12,-5+\frac{1}{3} \cdot 9\right)=(-6+4,-5+3) \\
& =(-2,-2)
\end{aligned}
$$

In general, for a line segment $\overline{A B}$ with endpoints $A\left(x_{1}, y_{1}\right)$ and $B\left(x_{2}, y_{2}\right)$, to find the point that partitions the segment in a ratio of $m: n$, or lies k of the way from A to B, use the following formula:

$$
\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right) \quad \text { where } k=\frac{m}{m+n}
$$

Connect

The line segment $\overline{A B}$ is shown on the coordinate plane on the right.
Find the point Q that is $\frac{3}{4}$ the distance from A to B.
Then, plot and label Q on the coordinate plane.

1
Identify the endpoints of $\overline{A B}$.
The coordinates of the endpoints are $A(-2,-3)$ and $B(2,5)$.
Since the problem states that Q is $\frac{3}{4}$ the distance from A to B, let $A=\left(x_{1}, y_{1}\right)$ and let $B=\left(x_{2}, y_{2}\right)$.

2
Use the formula to find point Q.
Let $k=\frac{3}{4},\left(x_{1}, y_{1}\right)=(-2,-3)$, and $\left(x_{2}, y_{2}\right)=(2,5)$.
$Q=\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right)$
$Q=\left(-2+\frac{3}{4}[2-(-2)],-3+\frac{3}{4}[5-(-3)]\right)$
$Q=\left(-2+\frac{3}{4}(4),-3+\frac{3}{4}(8)\right)$
$Q=(-2+3,-3+6)$
$Q=(1,3)$
Point $Q(1,3)$ is $\frac{3}{4}$ the distance from A to B.

Plot Q on the coordinate plane.

EXAMPLE A The line segment $\overline{B A}$ is shown on the coordinate plane on the right.

Find the point Q that partitions $\overline{B A}$ in a ratio of 1:3. Then, plot and label Q on the coordinate plane.

1
Identify the endpoints of $\overline{B A}$.
The coordinates of the endpoints are $A(-5,3)$ and $B(-1,-5)$.
To partition $\overline{B A}$ in a ratio of $1: 3$, find the point that is $\frac{1}{1+3}$, or $\frac{1}{4}$, of the distance from B to A. Let $B=\left(x_{1}, y_{1}\right)$ and let $A=\left(x_{2}, y_{2}\right)$.

2
Use the formula to find point Q.
Let $k=\frac{1}{4},\left(x_{1}, y_{1}\right)=(-1,-5)$, and $\left(x_{2}, y_{2}\right)=(-5,3)$.
$Q=\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right)$
$Q=\left(-1+\frac{1}{4}[-5-(-1)],-5+\frac{1}{4}[3-(-5)]\right)$
$Q=\left(-1+\frac{1}{4}(-4),-5+\frac{1}{4}(8)\right)$
$Q=(-1+(-1),-5+2)$
$Q=(-2,-3)$
Point $Q(-2,-3)$ partitions $\overline{B A}$ in a ratio of 1:3.

3
Plot Q on the coordinate plane.

The endpoints of $\overline{C D}$ are $C(0,3)$ and $D(12,18)$. Find the point P that partitions $\overline{C D}$ in a ratio of 2:1.

EXAMPLE B The line segment $\overline{A B}$ is shown on the coordinate plane on the right.

Find the midpoint of $\overline{A B}$.

1
Identify the endpoints of $\overline{A B}$.
The coordinates of the endpoints are $A(-4,1)$ and $B(4,3)$.
The midpoint of $\overline{A B}$ is the point that is $\frac{1}{2}$ of the distance from A to B.

Let $A=\left(x_{1}, y_{1}\right)$ and $B=\left(x_{2}, y_{2}\right)$.
2
Use the formula to find the midpoint.
Let Q be the midpoint of $\overline{A B}$.
Let $k=\frac{1}{2},\left(x_{1}, y_{1}\right)=(-4,1)$, and $\left(x_{2}, y_{2}\right)=(4,3)$.

$$
\begin{aligned}
& Q=\left(x_{1}+k\left(x_{2}-x_{1}\right), y_{1}+k\left(y_{2}-y_{1}\right)\right) \\
& Q=\left(-4+\frac{1}{2}[4-(-4)], 1+\frac{1}{2}(3-1)\right) \\
& Q=\left(-4+\frac{1}{2}(8), 1+\frac{1}{2}(2)\right) \\
& Q=(-4+4,1+1) \\
& Q=(0,2)
\end{aligned}
$$

Point $(0,2)$ is the midpoint of $\overline{A B}$.

The formula for finding the midpoint of a segment with endpoints $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$ is

$$
\left(\frac{x_{1}+x_{2}}{2}, \frac{y_{1}+y_{2}}{2}\right)
$$

How does this formula relate to the formula that you have been using?

Practice

Find the coordinates of point Q.

1. The line segment $\overline{A B}$ is shown on the coordinate plane on the right.

Find the point Q that is $\frac{1}{5}$ the distance from A to B.
2. The line segment $\overline{C D}$ is shown on the coordinate plane on the right.

Find the point Q that is $\frac{2}{3}$ the distance from C to D.
3. The line segment $\overline{G F}$ is shown on the coordinate plane on the right.

Find the point Q that partitions $\overline{G F}$ in a ratio of 1:3.
4. The line segment $\overline{J K}$ is shown on the coordinate plane on the right.

Find the point Q that partitions $\overline{J K}$ in a ratio of 3:2.

\qquad

Use the information below for questions 5 and 6. Find the point described.

The endpoints of line segment $\overline{X Y}$ are $X(-6,2)$ and $Y(6,-10)$.
5. Find the point P that is $\frac{1}{3}$ the distance from X to Y. \qquad
6. Find the point Q that partitions $\overline{Y X}$ in a ratio of 3:1. \qquad

Solve.

7. Point A is located at $(1,4)$. Point P at $(3,5)$ is $\frac{1}{3}$ the distance from A to point B.

What are the coordinates of point B ? \qquad
8. Point C is located at the origin. Point Q at $(-1,-2)$ partitions $\overline{C D}$ in a ratio of 1:6.

What are the coordinates of point D ? \qquad
9. The line segment $\overline{H J}$ is shown on the coordinate plane to the right.

Find the point Q that is $\frac{4}{5}$ the distance from J to H. \qquad

Fill in the blank.

10. REASON If point P is $\frac{3}{7}$ the distance from A to B, then it is \qquad the distance from B to A.

Plot points L and P as described.

11. SHOW Point K is shown on the coordinate plane on the right.

Plot a point L so that it is 15 units from point K and so that $\overline{K L}$ is not vertical or horizontal. (Hint: Find a Pythagorean triple where the largest number is 15.) Then, add point P that is $\frac{1}{3}$ the distance from K to L.

