

Comparison of the local division of the loca

Dividing Line Segments

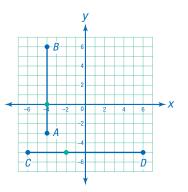
UNDERSTAND The **midpoint** of a line segment divides, or **partitions**, the segment in half, producing two line segments of equal length, so the lengths have a ratio of 1:1. It is possible to find the point that divides a given line segment into two segments of any given ratio.

For a vertical or horizontal line segment, finding such a point is a straightforward process. Look at the coordinate plane.

Notice that all points on \overline{AB} have the same x-coordinate, -4. So, the point $\frac{1}{3}$ of the way from A to B "rises" only $\frac{1}{3}$ of the way along the line. To find this point, add $\frac{1}{3}$ of the length of \overline{AB} to the y-coordinate of A.

$$(-4, -3 + \frac{1}{3}AB) = (-4, -3 + \frac{1}{3} \cdot 9)$$

= $(-4, -3 + 3) = (-4, 0)$



The point (-4, 0) is $\frac{1}{3}$ of the way from A to B, and it partitions \overline{AB} in a ratio 1:2.

A similar process can be used to find the point $\frac{1}{3}$ of the way from C to D. This point "runs" only $\frac{1}{3}$ of the length along the line from C to D.

$$(-6 + \frac{1}{3}CD, -5) = (-6 + \frac{1}{3} \cdot 12, -5) = (-6 + 4, -5) = (-2, -5)$$

The point (-2, -5) is $\frac{1}{3}$ of the way from C to D, and it partitions \overline{CD} in a ratio 1:2.

A diagonal line segment can also be partitioned by using a point. A point that is, for example, $\frac{1}{3}$ of the way from one endpoint to another "rises" $\frac{1}{3}$ of the way along the segment and also "runs" $\frac{1}{3}$ of the way along the segment.

Look at line segment \overline{MN} on the coordinate plane below. To find the point *P* that is $\frac{1}{3}$ of the way from *M* to *N*, add $\frac{1}{3}$ of the "rise" to the *y*-coordinate of *M* and add $\frac{1}{3}$ of the "run" to its *x*-coordinate. Point *M* is located at (-6, -5), and *N* is located at (6, 4).

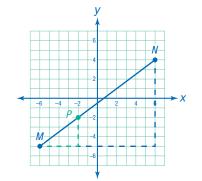
rise = 4 - (-5) = 9
run = 6 - (-6) = 12

$$P = (-6 + \frac{1}{3} \cdot 12, -5 + \frac{1}{3} \cdot 9) = (-6 + 4, -5 + 3)$$

$$= (-2, -2)$$

In general, for a line segment \overline{AB} with endpoints $A(x_1, y_1)$ and $B(x_2, y_2)$, to find the point that partitions the segment in a ratio of *m*:*n*, or lies *k* of the way from *A* to *B*, use the following formula:

$$(x_1 + k(x_2 - x_1), y_1 + k(y_2 - y_1))$$
 where $k = \frac{m}{m+n}$



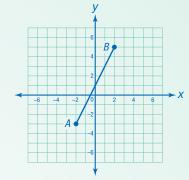
Connect

1

2

The line segment \overline{AB} is shown on the coordinate plane on the right.

Find the point Q that is $\frac{3}{4}$ the distance from A to B. Then, plot and label Q on the coordinate plane.



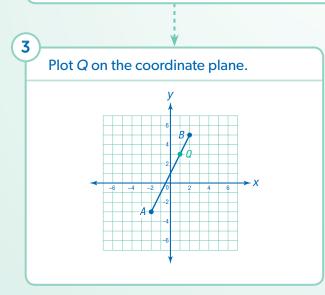
Identify the endpoints of \overline{AB} .

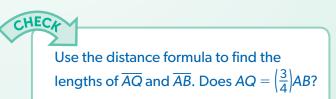
The coordinates of the endpoints are A(-2, -3) and B(2, 5).

Since the problem states that Q is $\frac{3}{4}$ the distance from A to B, let $A = (x_1, y_1)$ and let $B = (x_2, y_2)$.

Use the formula to find point Q.

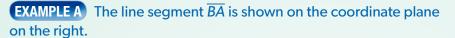
Let
$$k = \frac{3}{4}$$
, $(x_1, y_1) = (-2, -3)$, and $(x_2, y_2) = (2, 5)$
 $Q = (x_1 + k(x_2 - x_1), y_1 + k(y_2 - y_1))$
 $Q = (-2 + \frac{3}{4}[2 - (-2)], -3 + \frac{3}{4}[5 - (-3)])$
 $Q = (-2 + \frac{3}{4}(4), -3 + \frac{3}{4}(8))$
 $Q = (-2 + 3, -3 + 6)$
 $Q = (1, 3)$
Point $Q(1, 3)$ is $\frac{3}{4}$ the distance from A to B.



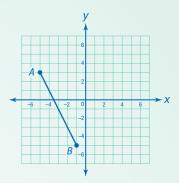


1

2



Find the point Q that partitions \overline{BA} in a ratio of 1:3. Then, plot and label Q on the coordinate plane.

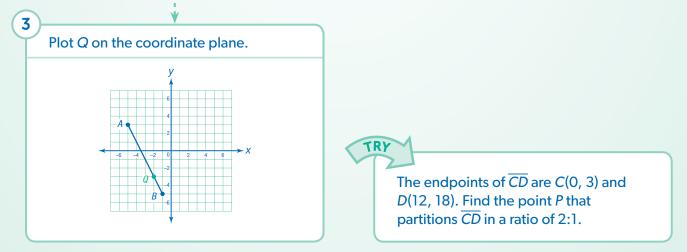


Identify the endpoints of \overline{BA} .

The coordinates of the endpoints are A(-5, 3) and B(-1, -5). To partition \overline{BA} in a ratio of 1:3, find the point that is $\frac{1}{1+3}$, or $\frac{1}{4}$, of the distance from *B* to *A*. Let $B = (x_1, y_1)$ and let $A = (x_2, y_2)$.

Use the formula to find point Q.

Let
$$k = \frac{1}{4}$$
, $(x_1, y_1) = (-1, -5)$, and $(x_2, y_2) = (-5, 3)$.
 $Q = (x_1 + k(x_2 - x_1), y_1 + k(y_2 - y_1))$
 $Q = (-1 + \frac{1}{4}[-5 - (-1)], -5 + \frac{1}{4}[3 - (-5)])$
 $Q = (-1 + \frac{1}{4}(-4), -5 + \frac{1}{4}(8))$
 $Q = (-1 + (-1), -5 + 2)$
 $Q = (-2, -3)$
Point $Q(-2, -3)$ partitions \overline{BA} in a ratio of 1:3



EXAMPLE B The line segment \overline{AB} is shown on the coordinate plane on the right.

Find the midpoint of \overline{AB} .

1

Identify the endpoints of \overline{AB} .

The coordinates of the endpoints are A(-4, 1) and B(4, 3).

The midpoint of \overline{AB} is the point that is $\frac{1}{2}$ of the distance from A to B.

Let $A = (x_1, y_1)$ and $B = (x_2, y_2)$.

The formula for finding the midpoint of a segment with endpoints (x_1, y_1) and (x_2, y_2) is

 $\left(\frac{x_1+x_2}{2}, \frac{y_1+y_2}{2}\right)$

How does this formula relate to the formula that you have been using?

Use the formula to find the midpoint.

2

Let Q be the midpoint of AB.
Let
$$k = \frac{1}{2}$$
, $(x_1, y_1) = (-4, 1)$, and
 $(x_2, y_2) = (4, 3)$.
 $Q = (x_1 + k(x_2 - x_1), y_1 + k(y_2 - y_1))$
 $Q = (-4 + \frac{1}{2}[4 - (-4)], 1 + \frac{1}{2}(3 - 1))$
 $Q = (-4 + \frac{1}{2}(8), 1 + \frac{1}{2}(2))$
 $Q = (-4 + 4, 1 + 1)$
 $Q = (0, 2)$
Point (0, 2) is the midpoint of \overline{AB} .

DISCUS

Practice

Find the coordinates of point Q.

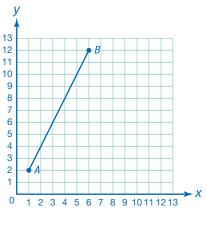
3.

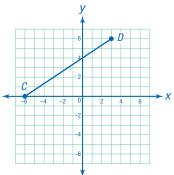
The line segment \overline{AB} is shown on the coordinate plane 1. on the right.

Find the point Q that is $\frac{1}{5}$ the distance from A to B.

The line segment \overline{CD} is shown on the coordinate plane 2. on the right.

Find the point Q that is $\frac{2}{3}$ the distance from C to D.

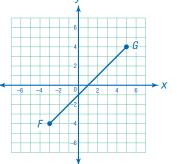


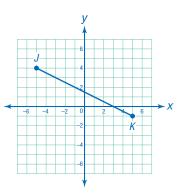


- The line segment \overline{GF} is shown on the coordinate plane
- on the right. Find the point Q that partitions \overline{GF} in a ratio of 1:3.

4. The line segment \overline{JK} is shown on the coordinate plane on the right.

Find the point Q that partitions \overline{JK} in a ratio of 3:2.





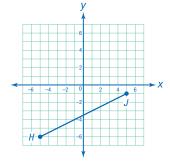
Use the information below for questions 5 and 6. Find the point described.

The endpoints of line segment \overline{XY} are X(-6, 2) and Y(6, -10).

- Find the point P that is $\frac{1}{3}$ the distance from X to Y. 5.
- Find the point Q that partitions \overline{YX} in a ratio of 3:1. 6.

Solve.

- Point A is located at (1, 4). Point P at (3, 5) is $\frac{1}{3}$ the distance from A to point B. 7. What are the coordinates of point *B*? _____
- Point C is located at the origin. Point Q at (-1, -2) partitions \overline{CD} in a ratio of 1:6. 8. What are the coordinates of point D?
- The line segment \overline{H} is shown on the coordinate plane to the right. 9. Find the point Q that is $\frac{4}{5}$ the distance from J to H. Plot point Q on \overline{H} .



Fill in the blank.

REASON If point P is $\frac{3}{7}$ the distance from A to B, then it is _____ the distance from B to A. 10.

Plot points L and P as described.

SHOW Point *K* is shown on the coordinate plane on 11. the right.

Plot a point L so that it is 15 units from point K and so that \overline{KL} is not vertical or horizontal. (Hint: Find a Pythagorean triple where the largest number is 15.) Then, add point P that is $\frac{1}{3}$ the distance from K to L.

